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For convergence, we could be talking about either a sequence {an} or its corresponding

series S =
∞∑
n=1

an. For sequences, this isn’t too complicated:

• A sequence {an} converges if lim
n→∞

an exists and is equal to a real number L.

Another way to say this is:

• A sequence {an} diverges if lim
n→∞

an does not exist or is equal to ∞.

Examples

• The sequence 1, 1
2
, 1
3
, 1
4
, . . . , defined by an = 1

n
, is convergent.

• The sequence 1, 2, 3, 4, . . . , defined by an = n, diverges because lim
n→∞

=∞.

• The sequence 0, 2, 0, 2, . . . , defined by an = 1+(−1)n, diverges because lim
n→∞

an = DNE.

For series, the definition of convergence isn’t complicated, but the methods of testing
convergence are fairly vast.

• A series S =
∞∑
n=1

an converges if the sequence of partial sums Sk =
k∑

n=1

an

converges.

Examples

• The series S =
∞∑
n=1

1
n2 converges, specifically to π2

6
(The Basel Problem).

• The series S =
∞∑
n=1

1
n

diverges, because it goes to ∞ (The Harmonic Series).

• The series S =
∞∑
n=1

(−1)n
n

converges, specifically to ln(2) (Alternating Harmonic Series).

• The series S =
∞∑
n=1

(−1)n diverges, because the partial sums are −1, 0,−1, . . . .
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We have two types of convergence, conditional and absolute. These tell us about whether

the series S =
∞∑
n=1

|an| converges.

• If a series S =
∞∑
n=1

an converges but
∞∑
n=1

|an| does not converge, then we say

that S is conditionally convergent.

• If a series S =
∞∑
n=1

an converges and
∞∑
n=1

|an| converges, then we say that S is

absolutely convergent.

Examples

• If a series S =
∞∑
n=1

an has all positive terms, meaning an > 0 for all n, then |an| = an,

so S is convergent if and only if it is absolutely convergent.

• The alternating harmonic series is the classic example of a conditionally convergent

series, because
∞∑
n=0

(−1)n
n+1

converges but
∞∑
n=0

1
n+1

does not.

• The series S =
∞∑
n=0

(−1)n
(n+1)2

converges, and so does
∞∑
n=0

1
(n+1)2

, so S is absolutely conver-

gent.

Now that we have the definitions down, let’s talk about methods of testing convergence.
Though the first method will actually help us determine if a series diverges. Throughout,

we’ll assume our series looks like S =
∞∑
n=1

an

• Divergence Test: If lim
n→∞

an 6= 0, or does not exist, then S diverges.

This should make sense since if lim
n→∞

an = L, then the series S is eventually just going to

look like L + L + L + . . . , which is ∞ unless L = 0.
Examples

• The series S =
∞∑
n=1

3n2+1
n2−13n+7

diverges because lim
n→∞

an = 3 6= 0.

• The series S =
∞∑
n=1

sin(n) diverges because lim
n→∞

an = DNE.

It’s important to note that the converse is NOT true. If lim
n→∞

an = 0, then the Divergence

Test is inconclusive, and the series could converge or diverge.
Example

• The harmonic series
∞∑
n=1

1
n

diverges even though lim
n→∞

1
n

= 0.
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The next test tells us how to compare a series that we’re interested in to one that we

already know about. There are two ways to do so. Let S =
∞∑
n=1

an and T =
∞∑
n=1

bn

• Direct Comparison Test: If an ≤ bn for all n, then S ≤ T , so

– If T converges, then S converges.

– If S diverges, then T diverges.

There may be a case where an ≤ bn does not hold for EVERY n, but the terms an seem
to be generally smaller than bn, as n gets bigger. This leads us to a less-strict comparison
test.

• Limit Comparison Test: If lim
n→∞

an
bn

= c, with c positive (i.e. nonzero and not

∞), then in the limit, S ≈ cT , so either

– S and T both converge, or

– S and T both diverge.

We have a particularly nice test when the series is an alternating series.

Let S =
∞∑
n=1

(−1)nan be an alternating series (so an ≥ 0 for all n).

• Alternating Series Test: If lim
n→∞

an = 0, then S converges.

Example

• This is a very quick way to show the alternating harmonic series converges. The

sequence 1
n

goes to 0 as n→∞, so the series
∞∑
n=0

(−1)n
(
1
n

)
converges.

The next test is pretty clever! If we have a series S =
∞∑
n=1

an, we can think of it as

a Riemann sum approximation with ∆x = 1 for some f(x) with f(n) = an for all n.
If f(x) is a decreasing function, then we know that the right-hand Riemann sum will be
an underestimate. Therefore, if the integral

∫∞
1

f(x)dx converges, the series S must also
converge.

Similarly, the left-hand Riemann sum will be an overestimate, which means that if the
integral

∫∞
1

f(x)dx diverges, the series S must diverge too. Put together, we get

• Integral Test: Let f(x) be a decreasing function on (1,∞) that is non-

negative and f(n) = an for all n. Then S =
∞∑
n=1

an converges if and only

if
∫∞
1

f(x)dx converges.
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Example

• The integral test allows us to prove the convergence or divergence of a p-series, a

series of the form
∞∑
n=1

1
np . The function 1

xp
is a decreasing function on (1,∞), so we can

use the integral test. If p = 1, then ∫
1

xp
= ln(x)

so evaluating from x = 1 to ∞ diverges, which tells us the harmonic series
∞∑
n=1

1
n

diverges.

If p > 1, then ∫ ∞
1

1

xp
=

1

1− p
,

so
∞∑
n=1

1
np converges.

The final two tests we’ll talk about are based off the Geometric Series
∞∑
n=0

arn which

converges only for |r| < 1. The idea is to take the series S =
∞∑
n=1

an and try to look at it as

a geometric series of sorts.

• Ratio Test: Let lim
n→∞

∣∣∣an+1

an

∣∣∣ = r. If r < 1, then S converges absolutely. If r > 1,

then S diverges. If r = 1, the test is inconclusive.

• Root Test: Let lim
n→∞

|an|1/n = r. If r < 1, then S converges absolutely. If r > 1,

then S diverges. If r = 1, the test is inconclusive.

Examples

• The Ratio test is very helpful when factorials are involved. Take S =
∞∑
n=1

en

n!
. Then

lim
n→∞

an+1

an
= lim

n→∞

en+1/(n + 1)!

en/n!
= lim

n→∞

e

(n + 1)
= 0.

Since this is less than 1, we know S converges.

• The Root test is particularly helpful when our terms include a power of n. Take

S =
∞∑
n=1

(2n)n

(3n)n+1 . First, we can manipulate this slightly to get

S =
∞∑
n=1

(2n)n

(3n)n

(
1

3n

)
=
∞∑
n=1

(
2n

3n

)n(
1

3n

)
=
∞∑
n=1

(
2

3

)n(
1

3n

)
.

4



Jonathan M Gerhard
JMathG

Calculus 2
Convergence of Series July 28, 2022

Now this almost looks like a geometric series. In fact, you could prove this converges
by doing a Direct Comparison Test with a geometric series. But we’ll do so using the
Root Test.

lim
n→∞

((
2

3

)n(
1

3n

))1/n

= lim
n→∞

(
2

3

)(
1

3n

)1/n

=
2

3
lim
n→∞

(
1

3n

)1/n

=
2

3
(1) =

2

3
.

Since this is less than 1, we know S converges.

Everything above was about proving whether a series converges or diverges. But if a
series does converge, then we often also want to be able to describe what it converges to. So
down below, I’ll include a few examples of series that converge to certain functions. These
are Maclaurin Series for the given function. So if we’re given a series and can recognize
the terms as corresponding to one of these series, we can find a closed-form function for that
series and then evaluate the function at the corresponding x value.

• Geometric Series:
∞∑
n=0

xn = 1
1−x for x ∈ (−1, 1).

• Natural Log:
∞∑
n=0

(−1)nxn+1

n+1
= ln(1 + x) for x ∈ (−1, 1].

• Exponential:
∞∑
n=0

xn

n!
= ex for all x ∈ R.

• Sine:
∞∑
n=0

(−1)nx2n+1

(2n+1)!
= sin(x) for all x ∈ R.

• Cosine:
∞∑
n=0

(−1)nx2n
(2n)!

= cos(x) for all x ∈ R.

• Natural Numbers:
∞∑
n=0

nxn = x
(1−x)2 for x ∈ (−1, 1).

• Squares:
∞∑
n=0

n2xn = x(1+x)
(1−x)3 for x ∈ (−1, 1).
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Examples

Let S =
∞∑
n=0

3n−1
6n

. Then

S =
∞∑
n=0

3n − 1

6n

=
∞∑
n=0

3n

6n
− 1

6n

=
∞∑
n=0

(
1

2

)n
−
∞∑
n=0

(
1

6

)n
Now we recognize that this is the form of two geometric series. The first has x = 1

2
and

the second has x = 1
6
. So

S =
1

1− 1
2

− 1

1− 1
6

= 2− 6

5
= 0.8

Let’s look at the alternating harmonic series S =
∞∑
n=0

(−1)n
n+1

. We recognize that this is the

form of ln(1+x), evaluated at x = 1 (notice x = 1 is included in the interval of convergence).
Therefore,

S = ln(2).

Let S =
∞∑
n=0

n2−n
3n

. Then

S =
∞∑
n=0

n2 − n

3n

=
∞∑
n=0

n2

3n
− n

3n

=
∞∑
n=0

n2

(
1

3

)n
−
∞∑
n=0

n

(
1

3

)n
So this is the difference of two series, with the first being the series for squares and the

second being the series for the natural numbers. Both of them are evaluated at x = 1
3
. So

S =
(1/3)(1 + 1/3)

(1− 1/3)3
− 1/3

(1− 1/3)2
=

3

2
− 3

4
=

3

4
.
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Let S =
∞∑
n=0

5
2nn!

. Then

S =
∞∑
n=0

5

2nn!

= 5
∞∑
n=0

1

2nn!

= 5
∞∑
n=0

(1/2)n

n!

Now we recognize that this is the form of an exponential function, evaluated at x = 1
2
.

So
S = 5e1/2.
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